MULTIVARIATE HYPOTHESIS TESTING OF DTI DATA FOR TISSUE CLUSTERING
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ABSTRACT adapted from Hext[4] and Snedecor[5, 1] to perform unsu-

: . . . . pervised tissue classi cation. This method usesRkkest for

In this work we investigate the feasibility and effectiveae : N oo

of unsupervised tissue clustering and classi cation athors assessing similarities b('atw.e.en tensors in d|ﬁerent \E?XE’
mitigate the effect of variability between voxels with difeént

for DTI data. T|ss_ue cluste_rlng aﬂd classi cation are _amonq:A’ we choose uniform seed voxels that have been preselected
the most challenging tasks in DT image analysis. While clus-

: : . . . . according to their local diffusion properties as deterrdibg
tering separates acquired data into objects, tissue dassi . : . S
. ; : . : : ; a hierarchical model selection framework, which is alsebas
tion provides in-depth information about each region aéiint

on F-tests.
est.

The unsupervised clustering algorithm utilizes a frame- One advantage of using statistical hypothesis testing lies

in performing tests on the entire diffusion tensor, which-co

quk pro_posgd by Hext an(_ll _Snedecor, where the_ nu_II h)_/pot aines information abodtr, FA and diffusion orientation. An-
esis of diffusion tensors arising from the same distribui®

determined by aff-test. Tissue type is classi ed according other advantage is that one can assess errors in ROI salectio

. e - and choose the con dence levels for each test. Finally,ghes
to one of three possible diffusion models (general anigptro .
I . . . . tests are rapid and easy to perform voxel-by-voxel, even for
prolate, or oblate), which is determined with a parsimosiou larae DTI data sets
model selection framework. This approach, also adapted fro 9 '
Snedecor, chooses among different models of diffusionimvith
a voxel using a series &f-tests. 2. THEORY
Both numerical phantoms and DWI data obtained from
excised rat spinal cord are used to test and validate tresseeti  2.1. Diffusion Tensor Imaging
clustering and classi cation approaches.
Keywords: DTI, diffusion tensor, parsimonious, cluster-
ing, hypothesis testing

The relationship between observed echo attenuation [6, 7],
caused by applying diffusion sensitizing gradients aloag v
ious directions, and the diffusion tensbr, can be character-
ized by

Diffusion Tensor Magnetic Resonance Imaging[1] (DT-MRI whereS(G) is observed signaf(0) is a signal in the absence
or MRI) provides noninvasive quantitative measurements obf the diffusion-weighted gradienb) is a symmetric (3x3)
the apparent diffusion tensor of water molecules in tissue2nd-order diffusion tensor aralis a matrix computed by:

In an anistropic medium, the signal attenuation in diffasio

weighted images (DWI) depends on the underlying tissue-struc b = 2G,G 2 . @)
tures. Most work in DTI segmentation is based on apply- : t 3"

ing thresholding criteria to tensor-derived scalar queesj

such as the Trace of the diffusion tens®r)( the Fractional WhereG; is the diffusion gradient applied iff' direction with
Anisotropy FA), and the Relative AnisitropyRA). However, duration , and is the diffusion time.

these scalars are generally subject to bias usually dueke ba
ground noise [2, 3]. Also, they do embody for all the infor-
mation available ir8 3 diffusion tensor. To reliably identify
regions of interest (ROI), we propose using information-con Diffusion tensor estimation is performed using a non-lmea
tained in the entire diffusion tensor to perform clusterihg  least square minimization method, proposed by Koay eflal.[8
this work we propose the use of statistical hypothesisrgsti applied to the function Eq. 1. The design matix, consists

2.2. Parameter estimation framework



of a list of b-matrix elements for a series aftrials or DWI  the seed points excludes the isotropic model. Remaining mod
acquisitions: els describe transverse isotropy (prolate and oblatesellis)
2 3 and full anisotropy.
kﬁl él bgl Zbuyl Zn(lzl 2@121 1
0. B, B, Doy, Moz, Mz, 1 3.1. Test between voxels
. . . . . . Once the diffusion model is chosen in each voxel, we select
: : : : : : : the seed region from 6 to 9 neighboring voxels to performt tis
K, W 2 2b,y, 2b,. 2b,, 1 sue clustering based on the diffusion model type of the seed
voxels. The null hypothesis assumes that the difference be-

Below, D is the estimated diffusion tensor for the generaltween diffusion tensors fan voxels of the same model type
anisotropic model written as@ 1) column vector. Here s statistically insigni cant. To test this hypothesis, wake
we estimate six independent parameter®ofn Eq. 1 and following steps, adapted from Hext:
the log of the signal in the absence of the diffusion-weighte

gradientog[S(0)]: 1. Combinemsets of acqyired signalScas , into gn[n
m 1] array, wheren is the number of experimental
D =[Dy; Dyy;Dzz;Dxy;Dxz;Dyz; log[SO)°; (4 data points in each voxel;
We minimize the Residual Sum of SquarBSS with respect 2. Combinem sets ofn individually estimated signals,
to the 7 free parameters of the diffusion model: Sces ([n m 1))
B X B 2. 3. Estimate the average diffusion tensoriiovoxels,
RSS = Si(G) e ™ ’ (5) D avg by anon-linear least square minimization method,

=1 applied toRSYEQ.5), using the combined acquired sig-

nal vectorScas , and the augmentdd m 7] design

whereS; (G) ande BiD are the observed and estimated sig- .
matrix,B¢c;

nals, respectivelyyis the number of data points in each voxel.

4. Estimate the average signal vect®g,q, [N m 1]
3. CLUSTERING BASED ON PARAMETER usingSavg (G) = S(0)e Bec Dag

DISTRIBUTION OF DIFFUSION TENSORS
5. Apply theF-test of the null hypothesis.

Parsimonious model selection methods are used as a pre pro- o
cessing for segmenting voxels based on diffusion progertie e use SnedecorB-test to assess the similarity among
within the voxels, however these methods do not provide anyariances within the voxels:
information about th_e homogeneity of the tissue, i.e., et _ (RSSayg RSSces)=(fp (m 1))
diffusion tensors within a given ROl have the same model Fo= (RSSces)=(m (n _1p)) (6)
type, and if so, whether their parameters are similar toehos
of their neighboring voxels. Such information can furtheri  wherefp = 7 is the number of the free parameters in the gen-
prove tissue segmentation. eral anisotropic modeln is a number of voxels witm ex-

In order to justify the use of th&-test hypothesis test- perimental data points eacRSSces andRSSayg are the
ing framework for tissue segmentation, the assumptiontseof t residual sums of squares of the combined estimated signals
normally distributed residuals and homoscedasticity, (iwei-  and the results from the t for the estimated average ditinsi
formity of the variance within an ROI) have to be satis ed. It tensor,D Avg , Fespectively.
has been shown that the residuals are asymptotically niyrmal
distributed atSNRgreater than 7 in an experiment otherwise
free of systematic artifacts. However, the variance mayeot
homogeneous among neighboring voxels. To overcome thig 1  gimulations
problem, we select locally homogeneous regions in the model
map having the same model type as determined by the pargio evaluate the parsimonious model selection approacyies, s
monious model selection method. thetic phantoms were generated in MATLAB (The MathWorks,

The parsimonious model selection framework proposednc.) by varying the fractional anisotrop, from 0.2 to 1.0
previously selects the one of four models that provides thwith a step size of 0.1, and signal to noiSNR from 5 to
best t to the DWI data using the fewest parameters. In thi23, for a xed signal intensity, 1=1000). The trace oD,
work we are interested in segmenting white matter regions, . typo appears in “Statistical Methods® by Snedecor and Gofs] in

i.e., presumed to ha_VG their fractional anisotrdf_A(g, greater  the formula given on page 344 describing Ehéest for comparing two nested
than 0.5. Thus the hierarchy of models from which we chooseodels. The corrected formula is given in Eq. 6 above

4. METHODS




Tr, was set t®210% & mmP=sec and®240( °® mn¥=sec for to 10, 20, 30, and 40, where the normalized eigenvec-
white and gray matter respectively, which are typical value tor parallel to the axis of symmetry for the oblate or prolate
for living brain tissue[9] . Normally distributed randomise  model is:

with = 1 and zero mean, was added to the signal inten- _ o 0

sity and the diffusion weighted images were calculated and o=p(;" ) =(sin cos; sin sin’; cos )™  (7)

scaled. This model assumes that noise is added to the real

and imaginary channels independently, and that the MR sidjoweve_r, the parsimonious modgl se_lection algprithrr_] Seg-
nal is recti ed. Theb-matrix was calculated with the imag- ments pssue based only on the diffusion properties within a
ing parameters described in the Excised Rat Spinal Cord Dﬂoxel, :.e., Igl)res?nce l:?f thi ”"?‘”S‘g?][fse Syrgf‘f”fe”_y- Thus, for
Experiments subsection. The hierarchical methods for palgxamp e, all prolate bers having different diffusion para

simonious model selection were applied to the set of 47 re€ters andfor orientation would still be marked as “prolate”

constructed diffusion-weighted images with 1 non diffursio while the multivariate hypothesis testing based clustedh
weighted image gorithm succesfully separated ROIs with different degides

prolateness and oblateness and differentiated betwekn dif
sion tensosr with at least a 1@irectional difference. It also
4.2. Excised Rat Spinal Cord DTI Experiments performed denoising of the data. Overall oblate and prolate

N ) ) model segmentation improved from 90% to 97% and from
In addition to simulation, we demonstrate our results on exg39 to 99%, respectively.

perimental MRI data obtained from an excised rat spinal cord

xed with 4% paraformaldehyde solution. DWIs were ob- . . .
tained using a PGSE DWI sequence with pulse duratien Excised Rat Spinal Cord DTI Experiment

2.5ms, diffusiontime =70 ms, repetition time (TR) =3500 Fig. 1 shows (A) th&,-weighted amplitude image and the
ms, and echo time (TE) = 14.7 ms. Other imaging paramgprientationally invariant BJFA and C)Tr maps. By examin-
eters were: in-plane resolution 200x206?, slice thickness ing amplitude image and the maps we can only distinguish
= 2mm, number of averages (NEX): n = 1, bandwidth = 50hijte from gray matter groups, athough the white matter it-

kHz. Forty DWIs per slice were acquired during 28 hoursself consists of several different ber compartments.
of scanning. Thirty-one of these were attenuated by diffu-

sion gradient$s = ( Gy; Gy; G;) and 9 were not attenuated
(iGj = 0). In each direction approximate b-values was 200(
s/mn¥. At each voxel location in the raw image, the appar
ent diffusion tenso) , was calculated[1]. Tensor-derived pa-
rameters, such as tfie, FA, principal directions and principal
diffusivities, 1, 2, and 3 were all calculated and passed to
the parsimonious model selection algorithm.

A) B) C)

5. RESULTS Fig. 1. Excised rat spinal cord: A) tHE,-weighted amplitude

image; B) the Fractional Anisotropy4) map; C) the Trace
Since the residuals from the phantom and the excised ratlspinTr) map.

cord experiments are asymptotically normally distribyted
the variance of each measurement is unchanging (homoscedas The parsimonious model selection method consistently
ticity), testing of one model against another, presentéoilge  segmented prolate regions in the white matter (Fig. 2A), but
is well grounded. The con dence interval for all tests wats S€does not reveal different ber organization patterns withi
to 95%. white matter. The multivariate hypothesis testing basad-cl
tering algorithm, however, identi ed 7 distinct prolategiens
within white matter (Fig. 2B)). The red arrow points to two
non-symmetric regions, which, after closer examination of
The parsimonious model selection results obtain&Ng=25 the xed spinal cord, revealed that the bers in these areas
andFA=0.6 showed 95% success for the isotropic modeK ~ Were compressed during specimen preparation.

2 = 3), 99% in identifying the general anisotropic model
(1> 2> 3),90% for the oblate model ¢ = > > 3) 6. DISCUSSION AND CONCLUSIONS
, and 93% for the prolate model{ > , = 3). Within
regions of oblate or prolate symmetry, we created 4 distincThe primary goal of this work is to investigate the feasibil-
regions with varying degrees of prolateness and oblatened$y of using a multivariate statistical hypothesis testirame-
as well as, directions of,-,( ;"' ) (Eq. 7) where was set work with DTI data to perform tissue clustering and classi -

5.1. Simulations



(1]

(2]

A) B)

Fig. 2. Excised rat spinal cord: A) Parsimonious model se-
lection map; B) 7 ROIs represent areas with different ber[3]
bundles.

(4]

cation. The maps produced by the proposed multivariate hy-
pothesis testing framework provide useful informationtbo
the distribution of different ber types within tissues. idg  [5]
numerical and spinal chord phantoms we demonstrated that
the anisotropic regions with subtle differences in diftusi
type (oblate, prolate or full anisotropy) and model paramel6]
ters (e.g., degree of prolateness or oblateness and ditenta

of axis of symmetry) could be resolved. Numerical phantom
results showed the ability to separate tensors with at mastm
10 difference in the orientation of their axis of symmetry at
SNR:=25 andFA=0.6 or greater. Such results increase our con-
dence in clustering based upon statistical hypothesitstes

F-testing for tissue clustering and classi cation applica-[8]
tions is both ef cient and powerful. The current approach
was succesfully applied to MRI microscopy of xed samples
in which imaging artifacts can be signi catly reduced and as
sumptions of normal residuals and uniform variance for each
voxel within the DWI data can be assured. Thus, when ap-
plied to ex vivotissue specimens, where background noisé?l
is the primary artifact and other systematic artifacts can b
remedied, this approach should work robustly.

Provided that the conditions for normally distributed desi
uals and uniform variances for DWIs within each voxel are
met, multivariate hypothesis testing could be used vwiith
vivo data as well. In clinical applications, however, where
other systematic artifacts can corrupt DWI data, this apgroa
may be problematic. When using DWI data from living tis-
sue, tests for Gaussianity of the distribution of residzald
a careful assessment of the degree of homoscedasticity must
be performed prior to applying this segmentation approach t
ensure its integrity. Our expectation is that applying mode
selection procedures prior to segmentation may improve au-
tomatic region of interest (ROI) delineation and classiioa
of different tissue types in DT-MRI volume data sets.
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